Impact of Water Broadening on Atmospheric CO₂ Retrievals for the OCO-2 Mission #### F. Oyafuso & Absco team* * David R. Thompson⁽¹⁾, Linda L. Brown⁽¹⁾, David Crisp⁽¹⁾, Yibo Jiang⁽¹⁾, Keeyoon Sung⁽¹⁾, Charles Miller⁽¹⁾, Vivienne Payne⁽¹⁾, Chris Benner⁽²⁾, Malathy Devi⁽²⁾ (1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 (2) The College of William and Mary, Williamsburgh, VA, 23681 ### **OCO-2 Spectroscopy** #### OCO precision requirements: - Goal: 1 ppm (~0.3%) - Necessitates extreme precision in spectroscopy #### Spectroscopy Model: 3 bands: WCO₂ (1.6μm), SCO₂ (2.06μm), O₂A (0.76μm) # **OCO-2 Spectroscopy: Updates** | | $0.76\mu m~O_2$ | 1.61μm CO ₂ | 2.06µm CO ₂ | H_2O | |-----------------------------|--|---|---|---| | Spectral range | 12745-13245 cm ⁻¹ | 4700-6500cm ⁻¹ | 4700-6500cm ⁻¹ | 12745-13245 cm ⁻¹
4700-6500cm ⁻¹ | | Spectral resolution | 0.01cm ⁻¹ or 0.002cm ⁻¹ | 0.01 cm ⁻¹ or
0.002cm ⁻¹ | 0.01 cm ⁻¹ or
0.002cm ⁻¹ | 0.01 cm ⁻¹ or
0.002cm ⁻¹ | | Position | Long (2010),
Long (2011) | Devi (2007) ¹ | Benner/Devi (2011) ¹ | Gordon (2012),
Rothman (2010) | | Intensities | " | " | " | " | | Air-widths | Tran (2008) | Predoi-Cross (2009) ¹ | 44 | " | | Air-shifts | Brown (2009)
Robichaud (2008a)
Predoi-Cross (2008) | Devi (2007b) ¹ | " | " | | Temp. dep. | Brown (2000) ^{1,2} | Predoi-Cross (2009) ¹ | 66 | " | | Line shapes | Voigt / Galatry | Speed-dependent
Voigt | Speed-dependent
Voigt | Voigt | | Isotopologue
abundance | Rothman (2009) ¹ | Rothman (2009) | Rothman (2009)* | Rothman (2009) | | H ₂ O broadening | Vess (2012)/Fanjoux (2012) | Sung (2009) | Sung (2009) | - | | Air-Line mixing | Tran (2008) | " | Benner/Devi (2011) | - | | "Temp. dep. | Tran (2008) | - | - | - | | Speed dep. | | Devi (2007) ¹ | Benner/Devi (2011) ¹ | - | | Continuum | CIA via Tran (2008) | - | Mlawer (2011) * | Mlawer (2011) * | ### Why worry about H₂O? - Water vapor varies greatly both spatially and temporally. - Spectroscopic errors associated with water vapor can potentially introduce unphysical biases in retrieved X_{CO2}. - Effect of water on spectroscopy: - Direct absorption - Enhanced broadening of CO₂ and O₂. * H. Schrijver et al., *Atmos. Meas. Tech.*, **2**, 561 (2009) # CO₂-H₂O broadening - Two recent publications: - Sung @ 4.3μm - Wallace @ 1.6µm (3 lines) - Weak dependence on vibrational quantum number extends applicability to WCO₂ and SCO₂ bands. - Use a rational function fit to measured water-broadened CO₂ lines, γ_{CO2←H2O}(J").* $$\gamma = \gamma_{air} + (\gamma_{self} - \gamma_{air}) x_{CO2}$$ Water turns out to be a much more effective broadener for CO₂ than air (~1.8x). ^{*} K Sung, L. Brown, RA Toth, TJ Crawford, Can J. Phys, 87, 469-484 (2009) ### O₂-H₂O broadening: two models - Until recently, there had been only one publication on H₂O broadening of O₂ (Fanjoux et al, *J. Phys Chem*, **101**, 1061 (1994)). BUT measurements were at high temps 446<T<990K. - This year another result has been published showing a much greater difference from air (Vess et al, *J. Phys Chem*, **116**, 4069 (2012)), but only six transitions were measured. - Enhancements differ considerably: ~8% (Fanjoux), ~80% (Vess) #### Effect on single band retrievals #### Previously: - WCO₂ and low optical thicknesses → core reduction increases retrieved X_{CO2}. - SCO₂ → lines are too saturated for cores to matter, enhance of wings *decreases* retrieved X_{CO2}. - Addition of water continuum in SCO2 changes things. - WCO2, SCO2 now largely cancel. # H₂O-CO₂: residuals Residuals are not improved for single band XCO2 retrievals – they worsen slightly. ## TCCON-coincident GOSAT: XCO₂ - 3 band retrieval complicates analysis: - Previous slides show WCO₂, SCO₂ may cancel. - Fanjoux O₂-H₂O broadening enhancement is small → little dependence on H2O column - If 1.8x approximation (Vess) is valid, XCO₂ spectroscopic error can exceed 1ppm. # TCCON-coincident GOSAT: Psurf - Apart from isotopic abundances, no additional scaling used: - Retrieved surface pressure agrees well with ECMWF: - 1.8x enhancement of dry air broadening reduces bias in retrieved surface pressure. - However, ~2.5ppm bias exists in XCO2 - Dependence on water column: -0.09 ppm/(g/cm²) → +0.22 ppm/(g/cm²) ### **Summary** - Capability of modeling water dependent cross sections has been included in the L2 algorithm for OCO-2 - Characterization of H2O-broadened O2 is very uncertain, ... - ... but, if not accounted for, could introduce spatial or temporal biases exceeding the OCO-2 error budget. - Further lab measurement may be needed to settle the issue. #### **Acknowledgements** Research described in this talk was performed at Jet Propulsion Laboratory, California Institute of Technology, and was supported by the OCO-2 mission under the National Aeronautics and Space Administration. Copyright 2012. All rights reserved.